3d Translational Transformation Of Inertia Properties

Quantum
Quest
Algorithms, Math, and Physics

3d translational transformation of inertia properties

The moment of inertia, or more precisely, the moment of inertia tensor, describes how mass is distributed within a body relative to a specific axis of rotation. The parallel axis theorem provides a method to determine the moment of inertia about an arbitrary axis, given the moment of inertia about a parallel axis passing through the center of mass.

Let’s consider a rigid body of mass m, with a center of mass at position \mathbf r_C. If a point mass is at a location \mathbf r, then we have \mathbf r' = \mathbf r - \mathbf r_C. The moment of inertia tensor I_{ij} with respect to a generic origin \mathbf O is given by

I_{ij} = \int \left(r^2\delta_{ij} - r_ir_j\right)\mathrm{d}m

where \delta_{ij} is the Kronecker delta. The moment of inertia with respect to the center of mass is:

I^C_{ij} = \int \left({r'}^2\delta_{ij} - r'_ir'_j\right)\mathrm{d}m

Through substitution and some algebra, the parallel axis theorem states that the moment of inertia tensor about any axis is:

I_{ij} = I^C_{ij} + m\left(r_C^2\delta_{ij} - r_{C,i}r_{C,j}\right)

In matrix form, the theorem can be expressed as:

\mathbf I = \mathbf I_{C} + m \left[\left\|\mathbf r_{C}\right\|^2\mathbf 1 - \mathbf r_{C}\mathbf r_{C}^T\right]

where \mathbf 1 is the identity matrix and \mathbf r_{C}\mathbf r_{C}^T represents the outer product.

To apply the theorem in Cartesian coordinates, consider a displacement vector \mathbf d = (d_x, d_y, d_z) from the center of mass to a new axis. The moment of inertia tensor \mathbf I becomes:

\mathbf I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} = \begin{bmatrix} I_{xx}^C & I_{xy}^C & I_{xz}^C \\ I_{xy}^C & I_{yy}^C & I_{yz}^C \\ I_{xz}^C & I_{yz}^C & I_{zz}^C \end{bmatrix} + m \begin{bmatrix} d_y^2+d_z^2 & -d_xd_y & -d_xd_z \\ -d_xd_y & d_x^2+d_z^2 & -d_yd_z \\ -d_xd_z & -d_yd_z & d_x^2+d_y^2 \end{bmatrix}

This expression provides a direct way to compute the moment of inertia tensor with respect to an axis displaced by \mathbf d.

For more insights into this topic, you can find the details here.