Eigenvalues and eigenvectors calculation
General criterion for asymptotic stability
The analysis of coupled dynamical systems frequently leads to systems of differential equations. While often approached from a vector-space perspective, it is instructive to understand their equivalence to single, higher-order differential equations.
We will explore this relationship using the canonical example of a coupled mass-spring system, which serves as a prototype for many phenomena in physics and engineering.
This analysis will show in a general treatment of n^{th} order linear homogeneous ODEs, revealing the connection between their characteristic equations and the eigenvalue problem of their corresponding state-space representation.
Consider a one-dimensional system of two masses, m_1 and m_2, connected by a spring of stiffness k_2, with the first mass also attached to a fixed support by a spring of stiffness k_1. The displacement of each mass from its equilibrium position is denoted by x_1(t) and x_2(t), respectively.
The forces acting on each mass are determined by Hooke’s law. Mass m_1 experiences a restoring force from the first spring, -k_1 x_1, and a force from the second spring, k_2(x_2 - x_1). Mass m_2 experiences only the force from the second spring, -k_2(x_2 - x_1). Applying Newton’s second law, F=ma, to each mass independently yields a system of two coupled second-order linear ODEs:
\begin{aligned} & m_1 \frac{\mathrm{d}^2 x_1}{\mathrm{d}t^2} = -k_1 x_1 + k_2 (x_2 - x_1) \\ & m_2 \frac{\mathrm{d}^2 x_2}{\mathrm{d}t^2} = -k_2 (x_2 - x_1) \end{aligned}
Rearranging these equations into a more standard form highlights the coupling between the variables:
\begin{aligned} & m_1 \ddot{x}_1 + (k_1 + k_2) x_1 - k_2 x_2 = 0 \\ & m_2 \ddot{x}_2 - k_2 x_1 + k_2 x_2 = 0 \end{aligned}
To obtain a unique solution, we must specify four initial conditions: x_1(0), \dot{x}_1(0), x_2(0), and \dot{x}_2(0).
This system can be analyzed through two primary, yet equivalent, mathematical frameworks.
One approach is to eliminate one of the dependent variables to obtain a single higher-order equation for the other. We can solve the first equation for x_2:
x_2 = \frac{m_1}{k_2} \ddot{x}_1 + \frac{k_1 + k_2}{k_2} x_1
To substitute this into the second equation, we must compute its second time derivative:
\ddot{x}_2 = \frac{m_1}{k_2} x_1^{(4)} + \frac{k_1 + k_2}{k_2} \ddot{x}_1
Substituting the expressions for x_2 and \ddot{x}_2 into the second equation of motion, m_2 \ddot{x}_2 + k_2 x_2 - k_2 x_1 = 0, yields:
m_2 \left( \frac{m_1}{k_2} x_1^{(4)} + \frac{k_1 + k_2}{k_2} \ddot{x}_1 \right) + k_2 \left( \frac{m_1}{k_2} \ddot{x}_1 + \frac{k_1 + k_2}{k_2} x_1 \right) - k_2 x_1 = 0
Combining terms based on the order of the derivative of x_1 gives a single fourth-order linear homogeneous ODE with constant coefficients:
(m_1 m_2) x_1^{(4)} + (m_1 k_2 + m_2(k_1+k_2)) \ddot{x}_1 + k_1 k_2 x_1 = 0
This demonstrates that the dynamics of one component of the coupled system can be described by a single higher-order differential equation.
Alternatively, we can convert the system of two second-order equations into a system of four first-order equations.
This is accomplished by introducing the velocities as new state variables. Let us define a state vector \mathbf{z}(t) \in \mathbb{R}^4:
\mathbf{z}(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \\ z_3(t) \\ z_4(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix}
The time evolution of this state vector is given by \dot{\mathbf{z}} = \mathbf{A} \mathbf{z}, where the matrix \mathbf{A} encodes the dynamics of the system:
\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_1+k_2}{m_1} & \frac{k_2}{m_1} & 0 & 0 \\ \frac{k_2}{m_2} & -\frac{k_2}{m_2} & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_1 \\ \dot{x}_2 \end{bmatrix}
This state-space representation is central to modern control theory and numerical analysis.
Both paths lead to the study of higher-order linear equations. Let us consider the general case of an n^{th} order linear homogeneous ODE with constant coefficients a_i \in \mathbb{R}:
a_n \frac{\mathrm{d}^n x}{\mathrm{d}t^n} + a_{n-1} \frac{\mathrm{d}^{n-1} x}{\mathrm{d}t^{n-1}} + \cdots + a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = 0
We posit a solution of the form x(t) = e^{\lambda t}. Substituting this form into the equation and noting that \frac{\mathrm{d}^k}{\mathrm{d}t^k} e^{\lambda t} = \lambda^k e^{\lambda t}, we obtain:
\left( a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 \right) e^{\lambda t} = 0
Since e^{\lambda t} \neq 0, the expression in the parenthesis must be zero. This yields the characteristic equation, a polynomial of degree n in \lambda:
P(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 = 0
By the fundamental theorem of algebra, this polynomial has n roots \lambda_1, \lambda_2, \ldots, \lambda_n in the complex plane.
If these roots are distinct, the general solution to the ODE is a linear combination of the fundamental solutions e^{\lambda_i t}:
x(t) = \sum_{i=1}^n c_i e^{\lambda_i t}
The n constants c_i are determined by n initial conditions. If a root \lambda_j has multiplicity m, it contributes m linearly independent solutions of the form e^{\lambda_j t}, t e^{\lambda_j t}, \ldots, t^{m-1}e^{\lambda_j t}.
Given n initial conditions, x(0), \dot{x}(0), \ldots, x^{(n-1)}(0), we can determine the coefficients c_i. For the case of distinct roots, this leads to a system of linear equations:
\begin{aligned} & x(0) = c_1 + c_2 + \cdots + c_n \\ & \dot{x}(0) = c_1\lambda_1 + c_2\lambda_2 + \cdots + c_n\lambda_n \\ & \ddot{x}(0) = c_1\lambda_1^2 + c_2\lambda_2^2 + \cdots + c_n\lambda_n^2 \\ &\vdots \\ & x^{(n-1)}(0) = c_1\lambda_1^{n-1} + c_2\lambda_2^{n-1} + \cdots + c_n\lambda_n^{n-1} \end{aligned}
This system can be expressed in matrix form, \mathbf{d} = \mathbf{V} \mathbf{c}:
\begin{bmatrix} x(0) \\ \dot{x}(0) \\ \vdots \\ x^{(n-1)}(0) \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}
The matrix \mathbf{V} is a Vandermonde matrix. Its determinant is non-zero if and only if all \lambda_i are distinct, which guarantees the existence of a unique set of coefficients \mathbf{c} = \mathbf{V}^{-1} \mathbf{d} for the given initial conditions.
We can rewrite the general n^{th} order ODE (assuming a_n=1 without loss of generality) as a first-order system.
Let’s define the state vector \mathbf{x} = [x, \dot{x}, \ldots, x^{(n-1)}]^T. The system dynamics \dot{\mathbf{x}} = \mathbf{A} \mathbf{x} are governed by the companion matrix \mathbf{A}:
\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}
The eigenvalues of this matrix \mathbf{A} are given by the solutions to its characteristic equation, \det(\mathbf{A} - \lambda\mathbf{I}) = 0. Let us compute this for the n=3 case:
\det \begin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ -a_0 & -a_1 & -a_2-\lambda \end{bmatrix} = 0
Expanding the determinant along the first column gives:
\begin{aligned} &(-\lambda) \det \begin{bmatrix} -\lambda & 1 \\ -a_1 & -a_2-\lambda \end{bmatrix} - (0) + (-a_0) \det \begin{bmatrix} 1 & 0 \\ -\lambda & 1 \end{bmatrix} \\ &= -\lambda(-\lambda(-a_2-\lambda) - (-a_1)) - a_0(1) \\ &= -\lambda(\lambda^2 + a_2\lambda + a_1) - a_0 \\ &= -(\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0) = 0 \end{aligned}
This is the characteristic polynomial of the original third-order ODE.
This result holds in general: the characteristic polynomial of the companion matrix \mathbf{A} is exactly the characteristic polynomial of the scalar n^{th} order ODE.
Therefore, the eigenvalues of the state-space matrix \mathbf{A} are identical to the roots \lambda_i that determine the fundamental solutions e^{\lambda_i t}. This establishes a complete correspondence between the two representations.
The analysis of higher-order linear ordinary differential equations is unified through their transformation into first-order systems of the form:
\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A} \mathbf{x}
where \mathbf{x}(t) is a state vector in \mathbb{R}^n and \mathbf{A} is an n \times n matrix of constant coefficients. The objective is to find a general solution for \mathbf{x}(t).
It is possible to achieve this decoupling the system through a coordinate transformation, a procedure rooted in the concepts of eigenvalues and eigenvectors.
Consider the ideal scenario where the system is completely decoupled, meaning the matrix \mathbf{A} is diagonal, \mathbf{A} = \mathbf{D} = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n). The system of equations is then:
\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
Each equation, \dot{x}_i = \lambda_i x_i, is independent of the others and has the straightforward solution x_i(t) = x_i(0) e^{\lambda_i t}. In matrix form, the solution is expressed using the matrix exponential:
\mathbf{x}(t) = \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix} \mathbf{x}(0) = e^{\mathbf{D}t} \mathbf{x}(0)
This suggests that if we can transform a general coupled system into a decoupled one, the solution becomes readily accessible.
For a general, non-diagonal matrix \mathbf{A}, our goal is to find an invertible linear transformation, represented by a matrix \mathbf{T}, that maps the original coordinates \mathbf{x} to new coordinates \mathbf{z} via \mathbf{x} = \mathbf{T}\mathbf{z}.
In this new coordinate system, we desire the dynamics to be diagonal. Substituting \mathbf{x} = \mathbf{T}\mathbf{z} into the original equation:
\begin{aligned} & \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{T}\mathbf{z}) = \mathbf{A}(\mathbf{T}\mathbf{z}) \\ & \mathbf{T}\frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = \mathbf{A}\mathbf{T}\mathbf{z} \\ & \frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = (\mathbf{T}^{-1}\mathbf{A}\mathbf{T})\mathbf{z} \end{aligned}
For the system to be decoupled in the \mathbf{z} coordinates, the matrix \mathbf{D} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T} must be diagonal. This is the classic diagonalization problem of linear algebra.
Rearranging this gives:
\mathbf{A}\mathbf{T} = \mathbf{T}\mathbf{D}
Let the columns of \mathbf{T} be the vectors \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \ldots, \boldsymbol{\xi}_n and the diagonal entries of \mathbf{D} be the scalars \lambda_1, \lambda_2, \ldots, \lambda_n. The matrix equation \mathbf{A}\mathbf{T} = \mathbf{T}\mathbf{D} can be examined column by column:
\mathbf{A} \begin{bmatrix} | & & | \\ \boldsymbol{\xi}_1 & \cdots & \boldsymbol{\xi}_n \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ \boldsymbol{\xi}_1 & \cdots & \boldsymbol{\xi}_n \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}
This equality implies that for each column i, \mathbf{A}\boldsymbol{\xi}_i = \lambda_i \boldsymbol{\xi}_i. This is the fundamental eigenvalue equation. The scalars \lambda_i are the eigenvalues of \mathbf{A}, and the corresponding non-zero vectors \boldsymbol{\xi}_i are its eigenvectors.
Geometrically, eigenvectors of a matrix \mathbf{A} are those special vectors whose direction is invariant under the linear transformation represented by \mathbf{A}; they are only scaled by the corresponding eigenvalue.
As example it is possible to take a matrix 2 x 2 and guess the values:
\begin{aligned} & \mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \\ & \mathbf{A} \,\mathbf{x} = \lambda \, \mathbf{x} \\ & \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \ne \lambda \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \ne \lambda \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{aligned}
That can be represented graphically:
In general that would be the case. However, there are two vectors \xi_{1,2} for which that holds:
\begin{aligned} & \mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \\ & \mathbf{A} \,\mathbf{x} = \lambda \, \mathbf{x} \\ & \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ & \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{aligned}
Therefore, the two eigenvectors and eigenvalues are:
\begin{aligned} & \xi_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lambda_1 = 2 \\ & \xi_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \lambda_2 = 4 \end{aligned}
That can be also be seen graphically:
To find the eigenvalues and eigenvectors, we rewrite the equation as:
\begin{aligned} & \mathbf{A}\mathbf{x} - \lambda\mathbf{x} = \mathbf{0} \\ & (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = \mathbf{0} \end{aligned}
For this homogeneous system to have a non-trivial solution \mathbf{x} \neq \mathbf{0}, the matrix (\mathbf{A} - \lambda\mathbf{I}) must be singular. This condition is equivalent to its determinant being zero:
\det(\mathbf{A} - \lambda\mathbf{I}) = 0
This equation is the characteristic polynomial of \mathbf{A}, and its roots are the eigenvalues. For each eigenvalue \lambda_i, the corresponding eigenvectors are found by solving the linear system (\mathbf{A} - \lambda_i\mathbf{I})\mathbf{x} = \mathbf{0} to find the basis vectors for its null space.
\begin{aligned} & \mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \\ & \det(\mathbf{A} - \lambda \, \mathbf{I}) \\ & \begin{vmatrix} 3 -\lambda & -1 \\ -1 & 3 - \lambda \end{vmatrix} \\ & = (3 - \lambda)^2 - 1 = \lambda^2 - 6 \, \lambda + 8 \\ & = (\lambda - 2)(\lambda - 4) \\ & \lambda_1 = 2, \, \lambda_2 = 4 \end{aligned}
\lambda_1 = 2, \, \lambda_2 = 4 are the eigenvalues. It is now possible to compute the eigenvectors. for \lambda_1 = 2:
\begin{aligned} & \left(\mathbf{A} - \lambda \, \mathbf{I}\right) \, \mathbf{x} = 0 \\ & \left( \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \Rightarrow x_1 = x_2 \\ & \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{aligned}
for \lambda_2 = 4:
\begin{aligned} & \left(\mathbf{A} - \lambda \, \mathbf{I}\right) \, \mathbf{x} = 0 \\ & \left( \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \Rightarrow x_1 = -x_2 \\ & \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{aligned}
The formal solution to \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} is \mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0), where the matrix exponential e^{\mathbf{A}t} is defined by its Taylor series expansion:
e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{A}t)^n}{n!} = \mathbf{I} + \mathbf{A}t + \frac{1}{2!}\mathbf{A}^2 t^2 + \cdots
If \mathbf{A} is diagonalizable, we can substitute \mathbf{A} = \mathbf{T}\mathbf{D}\mathbf{T}^{-1}. A key property is that \mathbf{A}^n = (\mathbf{T}\mathbf{D}\mathbf{T}^{-1})^n = \mathbf{T}\mathbf{D}^n\mathbf{T}^{-1}. The series becomes:
\begin{aligned} e^{\mathbf{A}t} &= \sum_{n=0}^{\infty} \frac{t^n}{n!} (\mathbf{T}\mathbf{D}^n\mathbf{T}^{-1}) \\ &= \mathbf{T} \left( \sum_{n=0}^{\infty} \frac{(\mathbf{D}t)^n}{n!} \right) \mathbf{T}^{-1} \\ &= \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1} \end{aligned}
The general solution for a diagonalizable system is therefore:
\mathbf{x}(t) = \mathbf{T} e^{\mathbf{D}t} \mathbf{T}^{-1} \mathbf{x}(0)
This provides a complete recipe for solving the system: first, find the eigenvalues and eigenvectors of \mathbf{A} to construct \mathbf{D} and \mathbf{T}; then, use this decomposition to construct the solution.
It is possible to take as example the matrix used previously:
\begin{aligned} & \mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \\ & \mathbf{T} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ & \mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \\ & \mathbf{T}^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix} \end{aligned}
And the solution becomes:
\begin{aligned} & \mathbf{x}(t) = \mathbf{T} e^{\mathbf{D}\,t} \mathbf{T}^{-1} \, \mathbf{x}_0 \\ & \mathbf{x}(t) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{4t} \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix} \, \mathbf{x}(0) \\ & \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{2t} + e^{4t} & e^{2t} - e^{4t} \\ e^{2t} - e^{4t} & e^{2t} + e^{4t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \end{aligned}
The behavior of the solutions can be visualized in the phase plane (for n=2). The nature of the trajectories is entirely determined by the eigenvalues of \mathbf{A}.
If the eigenvalues \lambda_1, \lambda_2 are real and distinct, the eigenvectors define two invariant lines. If \lambda_1, \lambda_2 > 0, all trajectories diverge from the origin. This fixed point is an unstable node or source. If \lambda_1, \lambda_2 < 0, all trajectories converge to the origin. This is a stable node or sink.
If \lambda_1 > 0 and \lambda_2 < 0, trajectories are repelled along the direction of the first eigenvector and attracted along the direction of the second. This is a saddle point, which is inherently unstable.
If the eigenvalues are a complex conjugate pair, \lambda_{1,2} = \alpha \pm i\beta, the solutions involve oscillatory behavior. If \alpha = 0 (purely imaginary eigenvalues), the trajectories are closed orbits (ellipses) around the origin. The fixed point is a center, and the system is stable but not asymptotically stable.
If \alpha < 0, the term e^{\alpha t} introduces a decay. Trajectories spiral inwards towards the origin. This is a stable spiral or spiral sink.
If \alpha > 0, the trajectories spiral outwards. This is an unstable spiral or spiral source.
The previous matrix:
\mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}
With two real and distinct eigenvalues \lambda_1 =2 and \lambda_2 = 4 is an example of a source.
Let’s consider a different system which has a matrix of the form:
\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
As it already diagonal with unitary column, it is not necessary to calculate the eigenvalues and eigenvectors, as the eigenvalues are \lambda_{1,2} = \pm 1, and the eigenvectors are the columns of the matrix.
The solution is:
\begin{aligned} & \frac {\mathrm{d}}{\mathrm{d} t} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ & \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} x(0) \\ y(0) \end{bmatrix} \end{aligned}
Since the sign are opposite the point is an example of a saddle.
This system is unstable.
Let’s consider now a system which has a matrix with pure complex eigenvalues:
\mathbf{A} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}
The first step is to compute the eigenvalues:
\begin{aligned} & \frac {\mathrm{d}}{\mathrm{d} t} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ & | \mathbf{A} - \lambda \mathbf{I} | = 0 \\ & \left\vert \begin{bmatrix} - \lambda & 2 \\ -2 & - \lambda \end{bmatrix} \right\vert = 0 \\ & \lambda^2 + 4 = 0 \\ & \lambda_{1,2} = \sqrt{-4} = -2 \, i \\ \end{aligned}
Once the eigenvalues are computed, we can find the eigenvectors:
\begin{aligned} & \mathbf{A} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \\ & (\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{x}_1 = \mathbf{0} \\ & \begin{bmatrix} -2\,i & 2 \\ -2 & -2\,i \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = \begin{bmatrix} 1 \\ i \end{bmatrix} \\ & (\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{x}_2 = \mathbf{0} \\ & \begin{bmatrix} 2\,i & 2 \\ 2 & 2\,i \end{bmatrix} \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix} = \begin{bmatrix} 1 \\ -i \end{bmatrix} \\ \end{aligned}
Now we can build the matrices:
\begin{aligned} & \mathbf{A} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \\ & \mathbf{T} = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \\ & \mathbf{D} = \begin{bmatrix} 2i & 0 \\ 0 & -2i \end{bmatrix} \\ & \mathbf{T}^{-1} = \begin{bmatrix} 0.5 & -0.5i \\ 0.5 & 0.5i \end{bmatrix} \end{aligned}
And the solution is:
\begin{aligned} & \mathbf{x}(t) = \mathbf{T} e^{\mathbf{D}\,t} \mathbf{T}^{-1} \, \mathbf{x}_0 \\ & \mathbf{x}(t) = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \begin{bmatrix} e^{2i\,t} & 0 \\ 0 & e^{-2i\,t} \end{bmatrix} \begin{bmatrix} 0.5 & -0.5i \\ 0.5 & 0.5i \end{bmatrix} \, \mathbf{x}(0) \\ & \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{2i\,t} + e^{-2i\,t} & -i\,e^{2i\,t} +i\, e^{-2i\,t} \\ i\,e^{2i\,t} -i\, e^{-2i\,t} & e^{2i\,t} + e^{-2i\,t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \\ & \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \cos(2t) && \sin(2t) \\ -\sin(2t) && \cos(2t) \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \end{aligned}
This solution is periodic.
Finally, let’s consider a matrix with complex eigenvalues with a real negative part:
\mathbf{A} = \begin{bmatrix} -1 & 2 \\ -2 & -1 \end{bmatrix}
The first step is to compute the eigenvalues:
\begin{aligned} & \frac {\mathrm{d}}{\mathrm{d} t} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ & | \mathbf{A} - \lambda \mathbf{I} | = 0 \\ & \left\vert \begin{bmatrix} -1 - \lambda & 2 \\ -2 & -1 - \lambda \end{bmatrix} \right\vert = 0 \\ & (-1 -\lambda)^2 + 4 = \lambda^2 + 2 \lambda + 5 = 0 \\ & \lambda_{1,2} = \frac{-2 \pm \sqrt{4-20}}{2} = \frac{-2 \pm \sqrt{-16}}{2} = \frac{-2 \pm 4 \, i }{2} = -1 \pm 2\,i \\ \end{aligned}
Once the eigenvalues are computed, we can find the eigenvectors:
\begin{aligned} & \mathbf{A} = \begin{bmatrix} -1 & 2 \\ -2 & -1 \end{bmatrix} \\ & (\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{x}_1 = \mathbf{0} \\ & \begin{bmatrix} -1 -2\,i & 2 \\ -2 & -1 -2\,i \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = \begin{bmatrix} 1 \\ i \end{bmatrix} \\ & (\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{x}_2 = \mathbf{0} \\ & \begin{bmatrix} -1 + 2\,i & 2 \\ 2 & -1 + 2\,i \end{bmatrix} \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix} = \begin{bmatrix} 1 \\ -i \end{bmatrix} \end{aligned}
Now we can build the matrices:
\begin{aligned} & \mathbf{A} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \\ & \mathbf{T} = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \\ & \mathbf{D} = \begin{bmatrix} -1 + 2i & 0 \\ 0 & -1 -2i \end{bmatrix} \\ & \mathbf{T}^{-1} = \begin{bmatrix} 0.5 & -0.5i \\ 0.5 & 0.5i \end{bmatrix} \end{aligned}
And the solution is:
\begin{aligned} & \mathbf{x}(t) = \mathbf{T} e^{\mathbf{D}\,t} \mathbf{T}^{-1} \, \mathbf{x}_0 \\ & \mathbf{x}(t) = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \begin{bmatrix} e^{-t} e^{2i\,t} & 0 \\ 0 & e^{-t} e^{-2i\,t} \end{bmatrix} \begin{bmatrix} 0.5 & -0.5i \\ 0.5 & 0.5i \end{bmatrix} \, \mathbf{x}(0) \\ & \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \frac{1}{2} e^{-t} \begin{bmatrix} e^{2i\,t} + e^{-2i\,t} & -i\,e^{2i\,t} +i\, e^{-2i\,t} \\ i\,e^{2i\,t} -i\, e^{-2i\,t} & e^{2i\,t} + e^{-2i\,t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \\ & \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = e^{-t} \begin{bmatrix} \cos(2t) && \sin(2t) \\ -\sin(2t) && \cos(2t) \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \end{aligned}
Compared to the previous case, there is a dumping effect due to the real coefficient e^{-t} and the solution converges.
A linear system \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} is defined as asymptotically stable if all solutions converge to the origin as t \to \infty, i.e., \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{0} for any initial condition \mathbf{x}(0).
Using the eigenvalues and eigenvector decomposition the solution become:
\begin{aligned} & \mathbf{A} \,\mathbf{T} = \mathbf{T} \, \mathbf{D} \\ & \mathbf{x}(t) = \mathbf{T} e^{\mathbf{D}\,t} \mathbf{T}^{-1} \, \mathbf{x}_0 \end{aligned}
As e^{\mathbf{D}\,t} is a diagonal matrix of the form:
e^{\mathbf{D}\,t} = \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix}
The solution \mathbf{x}(t) is therefore a linear combination of terms of the form e^{\lambda_i t}. For complex eigenvalues \lambda = \alpha + i\beta, the corresponding solution term behaves as:
e^{\lambda t} = e^{(\alpha+i\beta)t} = e^{\alpha t} e^{i\beta t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))
The magnitude of this term is |e^{\lambda t}| = |e^{\alpha t}| |e^{i\beta t}| = e^{\alpha t}. The solution component associated with this eigenvalue will decay to zero only if e^{\alpha t} \to 0, which requires \alpha < 0. This leads to a powerful and universal criterion for stability:
A linear system \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} is asymptotically stable if and only if all eigenvalues \lambda_i of the matrix \mathbf{A} have a strictly negative real part.
\Re(\lambda_i) < 0, \quad \forall i=1, \ldots, n