In the complex plane representation of vacuum quadratures, the result suggests a method to reduce quantum noise in balanced interferometers, using squeezed light. Specifically, \mathbf P_{\lambda}-squeezed states with negative R_\lambda can reduce fluctuations. This representation depicts a special case, \mathbf P_{\lambda}-squeezed vacuum.
Introducing \mathbf P_{\lambda}-squeezed vacuum at input channel (1) we could reduce phase measurement fluctuations below the standard quantum noise limit.
We can define the squeezed vacuum as:
\mathbf{A}_{R_\lambda} | \boldsymbol \alpha_\lambda, R_\lambda \rangle = \alpha_{\lambda R} | \boldsymbol \alpha_\lambda, R_\lambda \rangle, \quad \alpha_{\lambda R} = 0
We indicate it as | \mathbf 0, R_\lambda \rangle and as a consequence:
\alpha_\lambda^\prime = \alpha_{\lambda R}\left[\cosh \left(R_\lambda\right) - \sinh \left(R_\lambda\right) \right] = 0
Therefore the expectation of the electric field, as well the expectation of the quadratures, are null:
\begin{aligned} & \langle \mathbf 0, R_\lambda | \mathbf{E}_{\lambda}(\mathbf r,0) | \mathbf 0, R_\lambda \rangle = 0 \\ & \langle \mathbf 0, R_\lambda | \mathbf{Q}_{\lambda} | \mathbf 0, R_\lambda \rangle = 0 \\ & \langle \mathbf 0, R_\lambda | \mathbf{P}_{\lambda} | \mathbf 0, R_\lambda \rangle = 0 \end{aligned}
We express \mathbf P_{\lambda} as function of \mathbf{A}_{R_\lambda} and \mathbf{A}_{R_\lambda}^\dag:
\begin{aligned} \mathbf P_{\lambda} = & -i\sqrt{\frac{\hbar}{2}}\left( \mathbf a_\lambda - \mathbf a_\lambda ^\dag \right) = -i\sqrt{\frac{\hbar}{2}}e^{R_\lambda}\left( \mathbf{A}_{R_\lambda} - \mathbf{A}_{R_\lambda} ^\dag \right) \end{aligned}
We can then calculate the variance which is the expectation of \mathbf P_{\lambda}^2:
\begin{aligned} \langle \mathbf 0, R_\lambda | \mathbf P_{\lambda}^2 | \mathbf 0, R_\lambda \rangle = & \langle \mathbf 0, R_\lambda | \left[ -i\sqrt{\frac{\hbar}{2}}e^{R_\lambda}\left( \mathbf{A}_{R_\lambda} - \mathbf{A}_{R_\lambda} ^\dag \right) \right]^2 | \mathbf 0, R_\lambda \rangle\\ = & \langle \mathbf 0, R_\lambda |-\frac{\hbar}{2}e^{2R_\lambda} \left( \mathbf{A}_{R_\lambda} - \mathbf{A}_{R_\lambda} ^\dag \right)^2 | \mathbf 0, R_\lambda \rangle\\ = & \langle \mathbf 0, R_\lambda |-\frac{\hbar}{2}e^{2R_\lambda} \left( \mathbf{A}_{R_\lambda}^2 + \mathbf{A}_{R_\lambda}^{\dag 2} - \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag - \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} \right) | \mathbf 0, R_\lambda \rangle\\ = & -\frac{\hbar}{2}e^{2R_\lambda} \left[ 0 + 0 - 1 - 0 \right] \\ = & \frac{\hbar}{2}e^{2R_\lambda} \end{aligned}
Using \mathbf{A}_{R_\lambda} | \mathbf 0, R_\lambda \rangle = 0 and \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^\dag = 0 and the commutator relation \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag = 1 + \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}.
If R_\lambda < 0, the the fluctuations of \mathbf P_{\lambda} are below the standard quantum limit.
Squeezed vacuum, unlike ordinary vacuum, exhibits a non-zero average photon number despite having a zero average field and a minimal product of quadrature standard deviations:
\Delta Q_\lambda \Delta P_\lambda = \frac{\hbar}{2}
We express \mathbf N_{\lambda} as function of \mathbf{A}_{R_\lambda} and \mathbf{A}_{R_\lambda}^\dag:
\begin{aligned} \mathbf N_{\lambda} = & \mathbf a_\lambda^\dag \mathbf a_\lambda \\ =& \left( \mathbf{A}_{R_\lambda}^\dag \cosh(R_\lambda) - \mathbf{A}_{R_\lambda} \sinh(R_\lambda) \right) \left( \mathbf{A}_{R_\lambda} \cosh(R_\lambda) - \mathbf{A}_{R_\lambda}^\dag \sinh(R_\lambda) \right) \\ =& \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} - \cosh(R_\lambda)\sinh(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}^\dag \\ & - \sinh(R_\lambda)\cosh(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag \\ =& \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag \\ & - \sinh(R_\lambda)\cosh(R_\lambda) \left( \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}^\dag + \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda} \right) \\ =& \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag - \\ & \sinh(R_\lambda)\cosh(R_\lambda) \left( \mathbf{A}_{R_\lambda}^{\dag 2} + \mathbf{A}_{R_\lambda}^2 \right) \end{aligned}
We can then calculate the expectation:
\begin{aligned} \langle \mathbf 0, R_\lambda | \mathbf N_{\lambda} | \mathbf 0, R_\lambda \rangle = & \langle \mathbf 0, R_\lambda | \left[ \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag - \right.\\ & \left. \sinh(R_\lambda)\cosh(R_\lambda) \left( \mathbf{A}_{R_\lambda}^{\dag 2} + \mathbf{A}_{R_\lambda}^2 \right) \right] | \mathbf 0, R_\lambda \rangle\\ = & \cosh^2(R_\lambda) \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} | \mathbf 0, R_\lambda \rangle + \sinh^2(R_\lambda) \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag | \mathbf 0, R_\lambda \rangle - \\ & \sinh(R_\lambda)\cosh(R_\lambda) \left( \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^{\dag 2} | \mathbf 0, R_\lambda \rangle + \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^2 | \mathbf 0, R_\lambda \rangle \right) \\ = & \cosh^2(R_\lambda) \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} | \mathbf 0, R_\lambda \rangle + \sinh^2(R_\lambda) \langle \mathbf 0, R_\lambda | (1 + \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}) | \mathbf 0, R_\lambda \rangle - \\ & \sinh(R_\lambda)\cosh(R_\lambda) \left( \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^{\dag 2} | \mathbf 0, R_\lambda \rangle + \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^2 | \mathbf 0, R_\lambda \rangle \right) \\ = & \cosh^2(R_\lambda) \times 0 + \sinh^2(R_\lambda) \times \left (1 + 0 \right) - \sinh(R_\lambda)\cosh(R_\lambda) \left( 0 + 0 \right) \\ = & \sinh^2(R_\lambda) \end{aligned}
The average number of photons is equal to \sinh^2(R_\lambda) small but non-null photon number is detectable with sensitive photoelectric detectors.
We can again consider a Mach-Zehnder interferometer where the state in input channel (1) is a squeezed vacuum | \mathbf 0, R_\lambda \rangle and we have the same quasi-classical state | \boldsymbol \alpha_\lambda \rangle_2 in input channel (2), with \alpha_\lambda \in \mathbb R (^{}\langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda}^\dag = \alpha_{\lambda} \langle \boldsymbol \alpha_{\lambda} | and \mathbf a_\lambda | \boldsymbol \alpha_\lambda \rangle = \alpha_{\lambda} | \boldsymbol \alpha_\lambda \rangle):
| \boldsymbol \Psi_{\text{in}} \rangle = | \mathbf 0, R_\lambda \rangle_1 \otimes | \boldsymbol \alpha_{\lambda} \rangle_2
The difference between the two output signals \mathbf N_6 - \mathbf N_5 for a \delta:
\delta = k\left(L_3 - L_4 \right) = \frac{\pi}{2} + \varepsilon
around the dephasing variation \varepsilon was previously calculated:
\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} = -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right)
We can express \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} replacing \mathbf a_{\lambda_1}^\dag and \mathbf a_{\lambda_1} as function of \mathbf{A}_{R_{\lambda_1}}, \mathbf{A}_{R_{\lambda_1}}^\dag since input channel (1) is a squeezed state, while \mathbf a_{\lambda_2}^\dag and \mathbf a_{\lambda_2} are unchanged since input channel (2) is semi-classical state:
\begin{aligned} \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} = & -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \\ = & -\sin(\varepsilon) \left[ \left[ \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right] \right. \\ & \cdot \left.\left[ \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right] - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & + i \cos(\varepsilon) \left[ \left[ \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right] \mathbf a_{\lambda_2} \right. \\ & \left .- \mathbf a_{\lambda_2}^\dag \left[ \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right] \right] \\ = & -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag + \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \right) - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} \right. \\ & \left. - \cosh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right] \end{aligned}
We can then calculate the expectation:
\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1\langle \mathbf 0, R_{\lambda_1} | -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag + \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \right) - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} \right. \\ & \left. - \cosh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right] | {}_1\mathbf 0, R_\lambda \rangle_1\\ = & -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_\lambda \rangle_1 +\right. \\ & \left. \sinh^2(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag | \boldsymbol \Psi_{\text{in}} \rangle \right. \right. \\ & + \left. \left. {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_\lambda \rangle_1 \right) \right. \\ & \left.- {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1 \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left.- \sinh(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left. - \cosh(R_{\lambda_1}){}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left.+ \sinh(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_\lambda \rangle_1 \right] \\ = & -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \times 0 + \sinh^2(R_{\lambda_1}) \times 1\right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( 0 + 0 \right) - \alpha_\lambda^2 \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \times 0 - \sinh(R_{\lambda_1}) \times 0\right. \\ & \left. - \cosh(R_{\lambda_1}) \times 0 + \sinh(R_{\lambda_1}) \times 0 \right] \\ = & \sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right] \end{aligned}
The only two terms which are contributing are {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_\lambda \rangle_1 and -{}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1, all the other gives 0 (the sign are then reversed by -\sin(\varepsilon)).
For the squeezed Vacuum Term the term \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag is not in normal order with respect to the operators \mathbf{A}_{R_{\lambda_1}} and \mathbf{A}_{R_{\lambda_1}}^\dag. Normal ordering would require all annihilation operators to be on the right of all creation operators. Here, the annihilation operator \mathbf{A}_{R_{\lambda_1}} is on the left of the creation operator \mathbf{A}_{R_{\lambda_1}}^\dag.
Because it’s not in normal order, when we evaluate its expectation value with respect to the squeezed vacuum state | \mathbf 0, R_{\lambda_1} \rangle, we use the commutator relation [\mathbf{A}_{R_{\lambda_1}}, \mathbf{A}_{R_{\lambda_1}}^\dag] = 1 to rewrite \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag = 1 + \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}. This leads to:
\begin{aligned} {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1\langle \mathbf 0, R_{\lambda_1} | (1 + \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}) | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & 1 + {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 = 1 + 0 = 1 \end{aligned}
For the coherent state term the term \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} is in normal order with respect to the operators \mathbf a_{\lambda_2} and \mathbf a_{\lambda_2}^\dag. The creation operator \mathbf a_{\lambda_2}^\dag is on the left of the annihilation operator \mathbf a_{\lambda_2}.
For a coherent state | \boldsymbol \alpha_{\lambda} \rangle_2, the expectation value of the normally ordered number operator \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} directly gives the average number of photons, which is the square of the amplitude \alpha_\lambda^2:
\langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle_2 = |\alpha_\lambda|^2 = \alpha_\lambda^2
This term represents the contribution from the semi-classical coherent state, where the photon number is determined by the amplitude of the classical field.
So the expectation of \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} is:
\langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = \sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right] \approx \alpha_{\lambda}^2 \varepsilon = \varepsilon \langle \mathbf N_{\lambda_2} \rangle
as small variations \varepsilon, we can approximate \sin(\varepsilon) \approx \varepsilon and the number of photons of the squeezed vacuum is negligible compared to \alpha_\lambda^2. So the results is again the average number of photons entering input channel (2).
If we wanted to compute the expectation of the squared balanced signal:
\begin{aligned} \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 = & \left\{-\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right.\right. \\ & \left. \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag + \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \right) - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \right.\\ & \left. + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} \right.\right. \\ & \left. \left. - \cosh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right] \right\}^2 \end{aligned}
It would require the computation of a long expression in one step. To split in three parts, we can use We have already computed for a generic state in input channel (1), and we can use that result:
\begin{aligned} {}_2 \langle \boldsymbol \alpha_\lambda | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \alpha_\lambda \rangle_2 = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \\ = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \end{aligned}
We can now express \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} replacing \mathbf a_{\lambda_1}^\dag and \mathbf a_{\lambda_1} as function of \mathbf{A}_{R_{\lambda_1}}, \mathbf{A}_{R_{\lambda_1}}^\dag since input channel (1) is a squeezed state.
We start with the term with \sin^2(\varepsilon):
\sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right]
We compute \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}:
\begin{aligned} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} & = \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \right) \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ = & \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ & - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ = & \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \\ & - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \end{aligned}
We compute \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} = (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) = (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1})^2:
\begin{aligned} \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \right)^2 = & \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \end{aligned}
Putting it all together:
\begin{aligned} & \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \end{aligned}
Now we compute the term with \cos^2(\varepsilon):
\cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right]
We compute (\mathbf a_{\lambda_1}^\dag)^2:
\begin{aligned} (\mathbf a_{\lambda_1}^\dag)^2 & = \left( \mathbf{A}_{R_{\lambda_1}}^\dag \cosh \left(R_{\lambda_1}\right) - \mathbf{A}_{R_{\lambda_1}}\sinh \left(R_{\lambda_1}\right) \right)^2 \\ & = \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \end{aligned}
\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} was previously computed.
We compute \mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag:
\begin{aligned} \mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag = & \left( \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right)^\dag \\ = & \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \\ & - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \end{aligned}
We compute \mathbf a_{\lambda_1}^2:
\begin{aligned} (\mathbf a_{\lambda_1})^2 & = \left( \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right)^2\\ & = \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \end{aligned}
Substituting all terms we get:
\begin{aligned} & \cos^2(\varepsilon) \left\{ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right. \right. \\ &\left. \left.+ \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \right. \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right. \\ &\left. \left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \right\} \end{aligned}
Now we compute the term with \sin(\varepsilon) \cos(\varepsilon):
- 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right]
We compute (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1}:
\begin{aligned} (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} = & \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right.\\ &\left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ = & \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \\ & - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \\ & + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \\ & + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \end{aligned}
We compute \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2:
\begin{aligned} \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 = & \left( \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right) \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right.\\ &\left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ = & \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \\ & + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \\ & - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \\ & + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \\ & - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \end{aligned}
We compute \mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}:
\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1} = (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}})
Substituting all terms we get:
\begin{aligned} - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} & \left\{ \left[ \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) \right\} \end{aligned}
We can now replace in the original expression:
\begin{aligned} {}_2 \langle \boldsymbol \alpha_\lambda | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \alpha_\lambda \rangle_2 = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \\ = & \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & \cos^2(\varepsilon) \left\{ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right. \right. \\ &\left. \left.+ \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \right. \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right. \\ &\left. \left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \right\} \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) \right\} \end{aligned}
We can now compute the expectation of this formula for the state | \mathbf 0, R_{\lambda_1} \rangle.
\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ & {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_1 + \mathbf T_2 + \mathbf T_3 | \mathbf 0, R_{\lambda_1} \rangle_1 \\ & {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_1 | \mathbf 0, R_{\lambda_1} \rangle_1 + {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_2 | \mathbf 0, R_{\lambda_1} \rangle_1 + {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_3 | \mathbf 0, R_{\lambda_1} \rangle_1 \end{aligned}
We can compute each term separately.
The first term is:
\begin{aligned} {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_1 | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) \right. \\ & \left.+ (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)\right. \\ & \left. + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & \sin^2(\varepsilon) \left[ {}_1 \langle \mathbf 0, R_{\lambda_1} | \left( \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - 2 \alpha_{\lambda_2}^2 {}_1 \langle \mathbf 0, R_{\lambda_1} | \left( \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) | \mathbf 0, R_{\lambda_1} \rangle_1 +\right. \\ & \left. (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf 1 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) \times 1 - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) \times 1 + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \end{aligned}
The second term is:
\begin{aligned} {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_2 | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \cos^2(\varepsilon) \left\{ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right. \right. \\ &\left. \left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \right. \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right. \\ &\left. \left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \right\} | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. \left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. + \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.+ \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ &\left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. \left. + \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \right] \\ = & \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 \left[ 0 - 0 + 0 \right] \right. \\ & \left. + (\alpha_{\lambda_2}^2 + 1) \left[ 0 - 0 - 0 + \sinh^2(R_{\lambda_1}) \times 1 \right] \right. \\ & \left. + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \times 1 - 0 - 0 + 0 \right] \right. \\ & \left. - \alpha_{\lambda_2}^2 \left[ 0 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \times 1 + 0 \right] \right] \\ = & \cos^2(\varepsilon) \left[ 0 + (\alpha_{\lambda_2}^2 + 1) \sinh^2(R_{\lambda_1}) \right. \\ & \left. + \alpha_{\lambda_2}^2 \cosh^2(R_{\lambda_1})\right. \\ & \left. - \alpha_{\lambda_2}^2 \left[ - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \right] \right] \\ = & \cos^2(\varepsilon) \left[ (\alpha_{\lambda_2}^2 + 1) \sinh^2(R_{\lambda_1}) \right. \\ & \left.+ \alpha_{\lambda_2}^2 \cosh^2(R_{\lambda_1}) \right. \\ & \left.+ 2 \alpha_{\lambda_2}^2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \right] \\ = & \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) \right. \\ & \left.+ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 \cosh^2(R_{\lambda_1})\right. \\ & \left. + 2 \alpha_{\lambda_2}^2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \right] \\ = & \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 (\sinh^2(R_{\lambda_1}) \right. \\ & \left.+ \cosh^2(R_{\lambda_1}) + 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1})) \right] \\ = & \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \right. \\ & \left. \alpha_{\lambda_2}^2 (\cosh(2R_{\lambda_1}) + \sinh(2R_{\lambda_1})) \right] \\ = & \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \end{aligned}
The third term is:
\begin{aligned} {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_3 | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1 \langle \mathbf 0, R_{\lambda_1} | - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} \right. \right. \\ & \left. \left. - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) \right\} | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ \cosh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. \left. - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \sinh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- \sinh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) | \mathbf 0, R_{\lambda_1} \rangle_1 \right\} \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ 0 - 0 - 0 + 0 + 0 - 0 \right] \right. \\ & \left.- \left[ 0 - 0 + 0 - 0 + 0 - 0 \right] - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) [0 - 0] \right\} \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ 0 - 0 - 0 \right\} \\ = & 0 \end{aligned}
Summing all terms:
\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1\langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \end{aligned}
We can now compute the variance:
\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle & = \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \Psi_{\text{in}} \rangle - \left(\langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}| \boldsymbol \Psi_{\text{in}} \rangle\right)^2 \\ = & \left\{\sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \right. \\ &\left. + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right]\right\} \\ & - \left\{\sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right]\right\}^2 \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ & - \sin^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 - \sinh^2(R_{\lambda_1}) \right]^2 \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ & - \sin^2(\varepsilon) \left[ \alpha_{\lambda_2}^4 - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + \sinh^4(R_{\lambda_1}) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2 \right. \\ & \left. - \alpha_{\lambda_2}^4 + 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) - \sinh^4(R_{\lambda_1}) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ = & \sin^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 \right] + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ = & \alpha_{\lambda_2}^2 \sin^2(\varepsilon) + \cos^2(\varepsilon) \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 \cos^2(\varepsilon) e^{2R_{\lambda_1}} \\ = & \alpha_{\lambda_2}^2 \left( \sin^2(\varepsilon) + \cos^2(\varepsilon) e^{2R_{\lambda_1}} \right) + \cos^2(\varepsilon) \sinh^2(R_{\lambda_1}) \end{aligned}
So the variance is:
\alpha_{\lambda_2}^2 \left( \sin^2(\varepsilon) + e^{2R_{\lambda_1}} \cos^2(\varepsilon) \right) + \sinh^2(R_{\lambda_1}) \cos^2(\varepsilon)
We can consider the case \varepsilon = 0, for which case we have:
\alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} = e^{2R_{\lambda_1}} \langle \mathbf N_{\lambda_2} \rangle
which is the expected result, a variance which is reduced by the squeezing factor e^{2R_{\lambda_1}} which less than one for 2R_{\lambda_1} negative.
As double confirmation, we can achieve this results in a similar fashion to what done for the vacuum.
With \varepsilon = 0 the expectation of \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} is null:
\langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = \sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right] = 0
we have for a generic |\boldsymbol \Psi_{\text{in}} \rangle:
\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1\langle \mathbf 0, R_{\lambda_1} | -\left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) \right. \\ & \left. - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] | \mathbf 0, R_\lambda \rangle_1 - 0 \end{aligned}
If the laser beam in in input channel (2) is intense, then \alpha_{\lambda_2}^2 \gg 1 and therefore (\alpha_{\lambda_2}^2 + 1) \approx \alpha_{\lambda_2}^2:
\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | -\left[ (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag + (\mathbf a_{\lambda_1})^2 \right] | \mathbf 0, R_\lambda \rangle_1\\ = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | \left( i (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1})\right)^2 | \mathbf 0, R_\lambda \rangle_1 \\ = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | \left( \mathbf P_{\lambda_1}\right)^2| \mathbf 0, R_\lambda \rangle_1 \\ \end{aligned}
As we previously computed the variance of the \mathbf P_{\lambda_1} quadrature for a squeezed state here, we have:
\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | \left( \mathbf P_{\lambda_1}\right)^2| \mathbf 0, R_\lambda \rangle_1 \\ = & \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} = e^{2R_{\lambda_1}} \langle \mathbf N_{\lambda_2} \rangle \end{aligned}
which coincide with the analytical result.
The signal to noise ratio:
\text{SNR} = \frac{\langle \mathbf N_{\lambda_5} - \mathbf N_{\lambda_6} \rangle}{\Delta_{\mathbf N_{\lambda_6}-\mathbf N_{\lambda_5}}} = e^{-R_{\lambda_1}} \varepsilon \sqrt{\mathbf N_{\lambda_2}}
is increased by a factor e^{-R_{\lambda_1}} compared to the previous case.
The minimum detectable dephasing for a given signal to noise ratio is reduced by a factor e^{-R_{\lambda_1}} and the sensitivity with a squeezed vacuum is larger than the standard quantum limit.